MOSSFARM: Model structure selection by fuzzy association rule mining

نویسندگان

  • Ferenc Peter Pach
  • Attila Gyenesei
  • János Abonyi
چکیده

Effective methods for feature and model structure selection are very important for data-driven modeling, data mining, and system identification tasks. This paper presents a new method for selecting important variables (regressors) in nonlinear (dynamic) models with mixed discrete (categorical, fuzzy) and continuous inputs and outputs. The proposed method applies fuzzy association rule mining. The selection process of the important variables is based on two interesting measures of the mined association rules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Novel Method for Selecting the Supplier Based on Association Rule Mining

One of important problems in supply chains management is supplier selection. In a company, there are massive data from various departments so that extracting knowledge from the company’s data is too complicated. Many researchers have solved this problem by some methods like fuzzy set theory, goal programming, multi objective programming, the liner programming, mixed integer programming, analyti...

متن کامل

Developing a Course Recommender by Combining Clustering and Fuzzy Association Rules

Each semester, students go through the process of selecting appropriate courses. It is difficult to find information about each course and ultimately make decisions. The objective of this paper is to design a course recommender model which takes student characteristics into account to recommend appropriate courses. The model uses clustering to identify students with similar interests and skills...

متن کامل

Optimizing Membership Functions using Learning Automata for Fuzzy Association Rule Mining

The Transactions in web data often consist of quantitative data, suggesting that fuzzy set theory can be used to represent such data. The time spent by users on each web page is one type of web data, was regarded as a trapezoidal membership function (TMF) and can be used to evaluate user browsing behavior. The quality of mining fuzzy association rules depends on membership functions and since t...

متن کامل

Computational Efficiency of Parallel Distributed Genetic Fuzzy Rule Selection for Large Data Sets

Genetic fuzzy rule selection is a two-phase classification rule mining method. First a large number of candidate fuzzy rules are generated by an association rule mining technique. Then only a small number of generated rules are selected by a genetic algorithm. We have already proposed an idea of parallel distributed implementation of genetic fuzzy rule selection. In this paper, we examine its c...

متن کامل

Improve Efficiency of Fuzzy Association Rule Using Hedge Algebra Approach

A major problem when conducting mining fuzzy association rules from the database (DB) is the large computation time and memory needed. In addition, the selection of fuzzy sets for each attribute of the database is very important because it will affect the quality of the mining rule. This paper proposes a method for mining fuzzy association rules using compressed database. We also use the approa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of Intelligent and Fuzzy Systems

دوره 19  شماره 

صفحات  -

تاریخ انتشار 2008